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Level curvature distribution in a model of two uncoupled chaotic subsystems
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We study distributions of eigenvalue curvatures for a block-diagonal random matrix perturbed by a full
random matrix. The most natural physical realization of this model is a quantum chaotic system with some
inherent symmetry, such that its energy levels form two independent subsequences, subject to a generic
perturbation which does not respect the symmetry. We describe analytically a crossover in the form of a
curvature distribution with a tunable parameter, namely, the ratio of intersubsystem/intrasubsystem coupling
strengths. We find that the peak value of the curvature distribution is much more sensitive to the changes in this
parameter than the power-law tail behavior. This observation may help to clarify some qualitative features of
the curvature distributions observed experimentally in acoustic resonances of quartz blocks.
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[. INTRODUCTION their distribution can be simply related to that of small ei-
genvalue spacings. On the basis of extensive numerical in-
Studies of statistical properties of complex quantum sysvestigations of both random matrices and several quantum
tems(chaotic or disorderedshow that their eigenvalue spec- chaotic systems, Zakrzewski and Delande conjectured an
tra exhibit patterns of universal fluctuations, whose structur@nalytical expression for the full distribution of curvatures
mainly depends on the fundamental symmetries of th¢6]. Later on, Zakrzewski-Delande formulas were derived
Hamiltonian [1,2]. Such a universality opens an attractive analytically by von Oppeni7] and by Fyodorov and Som-
possibility of modeling the fluctuations by comparing themmers[8] for the random matrix models of all three univer-
with those observed in long sequences of eigenvalues of rasality classes.
dom matrices of appropriate symmefi§,4]. Namely, sys- However, in many relevant experimental circumstances,
tems with no time-reversal invariance are known to be adphysical systems have accidentally more underlying symme-
equately described by Gaussian unitary ensenf®BIE) of  tries(frequently called “geometric) acting in addition to the
complex Hermitian matrices, and systems with time-reversapresence or the absence of the time-reversal invariance. Such
invariance are described by Gaussian orthogonal ensemblsymmetries naturally induce classification of energy levels
(GOB) or Gaussian symplectic ensemble of real symmetricaccording to irreducible representations of the corresponding
or complex quaternion matrices, depending on the existencgymmetry group, and the energy levels corresponding to dif-
of strong spin-orbit coupling. ferent representations form statistically independent subse-
More recently, the interest in studying spectral statistics ofjuences. Only these subsequences may be then meaningfully
guantum chaotic systems was much revitalized by the undecompared with the universal random matrix patterns. In fact,
standing that their energy spectra display a universal change generic situation may be even more complicated, since
in their characteristics as a response to external perturbatioggometric symmetries may not be exact, but approximate.
of various kinds. The nature of the perturbation may varyThis will clearly lead to spectra being a mixture of different
considerably depending on the physical system, and usuallyubsequences with uncertain statistical consequences of mu-
involves application of external fieldsnagnetic or electric  tual interference.
change of boundary conditions or the shape of the system, Recent experimental studies on acoustic resonance spectra
rearrangement of positions of impurities in disordered mein quartz blockg9,10] suggest that the system may fall into
dium, or variation of temperature, pressure or any other tunthe latter category, and the deviations from standard theoret-
able physical characteristics. ical predictions of parametric correlations may have their
One of the frequently used measures of parametric senserigin in remnant geometric symmetries. This fact motivated
tivities of complex quantum systems is the distribution ofseveral groups to investigate the effects of partial symmetry
level curvatures, which is defined as the second-order derivdsreaking on the level curvaturg¢41,12. However, closed
tive of eigenvalues with respect to a perturbation parameteform analytical expressions for curvature distributions for the
In Ref.[5] Gaspard and coauthors developed expressionsase of partly broken symmetries are not available, to the
for the probability densities of level curvatures and foundbest of our knowledge.
that the large curvatures must exhibit universal behavior In the present paper we consider a simpler, but related
classified according to the underlying gross symmetries. Inmodel. Rather than studying level curvatures in a system
deed, the curvatures become large in the vicinity of avoidedavith partly broken symmetry, we address the case of two
crossings of energy levels as functions of a parameter andoninteracting subsystems subject to a perturbation which
induces both coupling between the subsystems and variation
of parameters within each of the two subsystems. This
*Electronic address: Guler.Ergun@brunel.ac.uk should be generically the case for a perturbation which does
"Electronic address: Yan.Fyodorov@brunel.ac.uk not respect the underlying symmetry. Of course, we do not
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claim our Simple model to be adequate for deSCfibing eXperiWe assume here tha&,Z have the same symmetry properties

mental situation in quartz bl(.)CkS’ but we rather hope that OUbs the diagonal blockd ; , and their probability densities can
results could help in indicating how various factors may af-be written as :

fect the shape of level curvature distributions.

Employing the random matrix calculations allows one to
derive exact expressions for the level curvature distribution p(jp)ocexp| —
as a function of relative weight of induced intrasublattice and
intersublattice osculating variations. The curvature distribu- A
tion naturally interpolates between the simple Cauchy-As for the off-diagonal blocksV, they represent general
Lorentz shape—characteristic for pure symmetry-breakingsaussian random matricésomplex for3=2 or real forg
perturbations which couple two subsystems without modify-=1) with no further symmetry constraints imposed. The

ing them individually—and the Zakrzewski-Delande formu- propability density for/ is then chosen for both cases to be
las typical for perturbations respecting the underlying sym-

N 32
2507 Tri2t. 3)

metry. - N N
We first treat a simpler case of complex Hermitian matri- P(V)ocexp{ -— T VAV 4
ces(systems with broken time-reversal invariapngedetail, 205

and then extend the derivations to the case of real symmetric

matrices. Our analytical calculations are supported and cof¥iodels of this kind were previously employed with satisfac-

roborated by accurate numerical simulations of random ma{-)orgakrﬁsg“:f niScIt(?aer Sﬁsgc?i]m data relative to symmetry

trix ensembles. _ . .
We denote the eigenvalues and corresponding eigenvec-
tors of A, by [A(P v{P] with p=1,2. This implies that
. HvP = PP wherei=1,... N and viPv{P=1. Our
To study the parametric dependence of energy levels of gain goal is to find the distribution of level curvatures, de-
system with some underlying symmetry, we consider a ranfined as the second-order derivative of eigenvalueX afith
dom matrix model where the Hamiltonidr of the system respect to the perturbation parameter Emp|oy|ng in the

II. GENERAL RELATIONS

linearly depends on a perturbation parameter usual way the second-order perturbation theory we can write
o the expression for the curvature corresponding, say, to an
H(e)=A+eB. (1) eigenvalue that foe=0 coincides with the(unperturbeyl

eigenvalue\!) as
Fpr the unpe_rturbed HamiltoniaA we choose a block- Nt far N e r o
diagonal matrix c=S (Vkad1Vin) (Vi1 d1Via) (VitVWVi2) (Vo V'vi1)
= )\i(l)—)\(kl) K=1 )\i(l)_)\(kZ)

®)

This expression shows that there are generically two contri-
. butions to the level curvatures. The first sum is essentially
with H; , beingN N random matricegcomplex Hermitian  the level curvature induced by thock-diagonalpart of the

or real symmetrig taken either from GUE or, respectively, perturbation which does not lead to any mixing between lev-
from GOE. These can be thought of as representing twels of the two noninteracting subsystems. Taken alone, this
noninteracting chaotic subsystems. That means, we considgfrm (which we will denote here ag;;) must, therefore,
the matricesﬂp as random Gaussian, with entrids. ; being  yield the Zakrzewski-Delande curvature distribution. In con-
independent and identically distributed variables with mearirast, the second sum that will be denoted’gsreflects the
zero and variance{sﬁinij>=202/N for the GUE case g  influence of the off-diagonal perturbation, which mixes the

=2) and(H2)=0?/2N for GOE case §=1). The joint I€VEIS of two subsystems. o
probability density forl- is then written as Then the distribution of the total curvatures is defined as
p

P(C)=(8(C—Cqi—Cy;) )4 and it can be conveniently written
using the Fourier transform as

~ N )
P(W,):Cﬁexp{— TrHrz)], 2) (= - i
2802 PO)= 5 f _dxe((e” )3 (e E)0)n i, (6)

whereC} is the appropriate normalization constant. _ e o _

We introduce an interaction between b|0(ﬁt§2 by con- The first factor((e l'>{1>H1 Is just the Fquner transform
sidering a general coupling matrix of the known Zakrzewski-Delande expression, hence the cal-
culation of the curvature distribution reduces to evaluating
the remaining facto((e""c2i>\7)p,2. Our next goal is to de-

rive the corresponding expressions, first @2 and then
for p=1.
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Ill. COMPLEX HERMITIAN MATRICES: pB=2 N dZ.dzZ - o
. _ H K=K o= 205INZ 2+ (110 242,
We are going to evaluate the following ensemble average e 277'|bk .
[see Eq(5)]: H2
de( A MIy—H,)
xS (i ) i o W
exp —ix ——= (V! Vo) (v, VY . iX .
S Do \@ e et det | \®+— |1y,
! V. H, N Qo
2

()

_ R o For this we also performed the Gaussian integrations dyer
First we perform the average ov¥r To simplify the nota- explicitly, and denote&zZagx.

.tion we denOte(/()‘i(l)_)‘(kZ))Ebk’ ViTlVVkZEWk and use the In what follows, we denote\i(l)EA and )\i(l)+i§/NE>\b
identity and proceed with calculations of the avergge- )y, in Eg.
(13) by employing a technique suggested in Réf3]. In
e DWWy — _ f dede e(i10Z 2~ |(kak+zkwk) ®) fact, for B=2 the averages of the ratios of determinants are
by 2 known in full generality for any value ofl [13,15. Never-
theless, we outline the corresponding calculation in order to
where the integration is taken over an auxiliary complexintroduce the method and the convenient notation which will
variableZ, . This allows one to rewrite Eq7) in the follow-  be used later on in this paper for the more complicated case
ing form: B=1.
Using the standard “supersymmetrization” idgk6], we

dede o o represent the denominator of the expression to be averaged
11 ( )f elI7P 2 1 (Z Wit Zigwie) . as a Gaussian integr@lve assume herg>0 for definite-
k=1 bk 2T ~ o~
V,H, ness$
©) .
. ) o o —1 = t (i/2)\,STS—(i/2)STH,S
Explicitly, employing the distribution function in E¢4), we det “(Aply—Ho) iNf dSds'el™ I =
need to calculate the integral (14)
o N o e N with a complex N-dimensional vectorS=(S;, ...,Sy)",
f dVdV'exp — —2Tr(VVT)—IVi Vv Z Z\Vio whereT stands for the vector transpose. For the determinant
203 k=1 in the numerator, we use Gaussian integrals over anticom-
N muting (GrassmannianN-component vectory, x, which
—i ( z ZkVEZ) \A/TVil . (10) gives
k=1

- de()\l H )_ 1[ dXdX e(|/2))\)( X~ (|/2)XTH2X (15)
It is convenient to introduce arNXN matrix G N2

=(Ekzkvk2)®viT1, so that, when used in the former identity
relation, we get Substituting the relationsyH,x=—Tr(Hox®x") and
S'H,S=Tr(H,S®S") in the integral yields
f dVd Ve (N2op) TV —iTr (V6 + 6TV o o~ (205N) TH(GTG)
' - t f
1 <...>ﬁ2:j def 42Sa(i2 A X+ ST

which is a generalization of E48). We further use ><<e*(i’z)Tr'qZ[S@SLX@XT]),qZ. (16)

The ensemble average over GUE matriEkscan be easily

516)=(vivi)S 7oz, (v
mG'G) (V'lv'l)%_; ZiZo(VigVe2), (12 performed by exploiting the identity
. —(i/2)T{HA] — (o 2I4AN) T A2
and recall thav;, are eigenvectors dfi; andv,, are those of (e )GUE* € Tr{A%] 17)
H». Using the orthogonality of the eigenvectors, and “decoupling” the quartic term in Grassmann variables
with the help of simple Hubbard-Stratonovich transforma-

1, k=¢ tion:
VieVe2= | k+# o

@tz [7 99 o (@) -(@orEmxty
e e . (18
andvllvI1 1 gives the result for the average in E§) as —= 27
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After some straightforward manipulations we arrive at the So far all the expressions were valid for finite-size matri-
following integral representation for the required ensembleces. WherN—c we expect the results, when appropriately

average: scaled, to be universal, i.e., broadly insensitive to the details
of the distribution of random matrices and applicable to
Y :f d2se- (72aN)(ST9 2+ (12,8 guantum chaotic systems. In such a limit the integrals in Eq.
Ha (22) can be evaluated by the saddle-point method. ¥or
<8072 ( the so callecbulk of the spectrumthe relevant
xfw ﬁef(qZIZ) saddle points(sp are p*P=(i\+80?—\?)/2 and g’
—» 27 =(iN=8ad%?—\?)/2. It is easy to see that only the choice

qsP=(ix— V8a?—\?)/2 yields the leading-order contribu-

tion, due to the presence of the fact@:(p) in the inte-

grand. Substituting this choice into the integrand in &%)

and evaluating the Gaussian fluctuations around the saddle-
Introducing the variablez=i\ —qo/N/2 and shifting Point values finally yields

the contour of integration in such a way that, the integral

. (19

over gg goes along the real axis, we can rewrite the above de(ATy—H)
expression as N
S P
- N
<. . .>|:| ocf %e*(NMUZ)(q,:fi)\)2 ﬁiom
2 ) 27

=ex4—;[ik+m]

2
g
—2) ] (23)
XJ dZSe(02/4N)(STS)2+(iIZ)AbSTS a

g2 It is easy to repeat the calculation for<0 and find that for
Xde{qFl - WS@) ST}, (200 any real value ok the result can be written as
where we shifted the contour fajz e (—o0,©) to be real. de(\y—H)
Further simplification can be made by noticing that the %
X N matrix S® S' is of rank unity, i.e., it hasN—1) zero de{ A+i—|Ty—H
eigenvalues, and only one nonzero eigenvalue equal to N N— oo

(SS). Then the determinant in the previous expression is

2

detgel— —sost
et gel — 7 S®

. 0'% 2
=exp| —iINX—= —2|x|mp(\)a5, (24
20°

2
Eqﬁ‘l(qp—%ssf). (21)

o 2 — . .
Finally, we introduce polar coordinat@-=rn with nfn=1  Where p(\)=(1/4m07) y8o"~ A" is the mean eigenvalue

and [d°S=r*"""dr dn, where fdn=Qy produces a con- der_}sr,:tey Ii(z)ruﬁeLiEt.ransform of the above expression with re-
stant factor, which corresponds to the area of a P

2N-dimensional unit sphere. Further introduciper? and spect tox immediately gives us the distributioR,4(C) of
. 2 ' : . . level curvatures induced by purely off-diagonal random cou-
changingp—Np/o“ and then following with the obvious "~~~ ~ T
manipulations we get pling V between the two subsystems. In the large-size limit
N—oo we therefore have

def\y—H = d
< (N )> :CNe(N"‘"Z)*Z ar
':|2

— 2

det\,ly—H —w 2 1 205mp(N)

e(Apln—H) TOF Poii(C)= — 2 . (29
Xe—(N/4a2)(q§—2i>\qF—402|nqF) (C—)\Z—UZZ> +(27Tp()\)o-§)2

“dP(Ar—P) (207 o _ o
X e "2 which is nothing else but the Cauchy-Lorentz distribution

o V2mp with the mean valudC)os=\(05/20%) and characteristic
x g~ (NI4o?)(p?=2ixp=40%In D)~ (2) widths T'o¢i=[27p(\) 03]
Turning our attention to the curvatures induced by the
where we reinstatedl, =\ +ix/N, X=2¢?x andCy, stands block-diagonal contributiong, [the termCy; in Eq. (5)] we
for the accumulated constant factors. The latter can alway&an first perform the ensemble average over the Gaussian
be restored by noticing that when,=\ the right hand side distribution of J;, Eq. (3). Employing similar methods as
must yield unity identically. before, we easily find the result to be
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_ (AB-AD) whereH is a N—1) X (N—1) GUE matrix.
(e"xcli>31=l_[ - , (26) The averaging of the ratios of determinants in E2j7)
ki A - X1 A can be donemutatis mutandisby the same supersymmetri-
' N K zation procedure as above. The detailed exposition of the

o . ) ) ) ~corresponding calculation can be found in the paper by Fyo-
where in this expressiox, =2¢7x. This expression remains dorov and Strahoy13]. Here we briefly sketch the main
to be averaged over the joint probability density df1  steps. After representing each of the four determinants by the
GUE eigenvalues (), ... AW, A®, . \(M which are  Gaussian integraléhree over anticommuting and one over
different from the chosen eigenvalug®) whose curvature usual complex variabl¢sone can easily perform the GUE

we address. The consideration which is exposed in Reféverage by exploiting the identity EGL7). Then the terms in
[7,8] shows that the exponent quartic with respect to anticommuting variables

are “decoupled” by introducing an auxiliary integration over

def(A—H) 3 3 Hermitian matrixQ, the procedure being a straightfor-
—_— , ward generalization of the Hubbard-Stratonovich transforma-
de( N+ X1 H) tion (18). All the subsequent manipulations are quite analo-
N N—1 gous to those exposed above, and for our case, instead of Eq.
(27) (22) we arrive at its analog pertinent:

<e_ixcli>31 ’Hlixe_(NM"z))‘z

def(A—H) _ N o - X |
<—de()\b_ﬁ)>ﬁ“fdQF(detQF)N 1exp{—ETr(QF—|AI)2] fodp pN~le~x(o2 )pexp[—4—02(p2—2|>\ p)]

X (g -p)(g®—p)(@a®-p), (28)

where g% are real eigenvalues of the Hermitiank3  Gaussian fluctuations around the saddle pdisee Ref[13]

matrix Q- and N stands forN—1. In fact, since TrQ.  for a general procedureThe final result is given by

—ix1)2 and deQr depend only on the eigenvalug§ >, (67" o =[1+2mp(N)o2Ix|]
. . ’ JyHy p 1
it is convenient to use these eigenvalues and the correspond-
ing eigenvectors as integration variables. In these coordi- o2
nates the integration measure is given by X ex —i)\x—12—2|xl7rp()\)crf .
20
dQe=duUldgVdcPaef? T (af—qf?), 29
= 1 ZS

Taking the Fourier transform, we, as expected, arrive at the
wheredu[U] is the invariant measure on the manifold of zakrzewski-Delande formula fg8=2:

unitary 3X3 matrices, representing the eigenvectoraf

and the last factor is the Jacobian of the transformation, 2 rs

known as the Vandermonde determinant. Puiag(C) = — > T2 (30
Again, we are interested in the linit>1, so we neglect [(€={C)a)™+Tq]

the difference betweeN andN—1 and omit the tilde hence-

forth. The set of the saddle points of the integrand with r€%ic widths I‘d=[277p()\)zrf].

spect to each of the variablgs>0 andq®?® is pSP=(ix N . ,
. ow we know all the factors in Eq6) and can find the
_ Sp— _
+y80°—\%/2) andqg"=(ix £ V80" —\"/2). These saddle o, are distribution accounting for both diagonal and off-

points are the same as that we found earlier. However, thﬁiagonal perturbations of the two decoupled subsystems:
presence of both the Vandermonde factors and that of the

where the mean valu)q=\(o3/20?) and the characteris-

productl}_,(q% —p) makes us select the following saddle = dx
points: P(C)=f_wﬂe'xc[l+l“d|x|]
iN+\80°—\? iIN—\80°—\?
q=—r T g@=g®=" O N,
F 2 r R F 2 Xex _|XF(01+0—2)_|X|(Foff+Fd) .
(o
(as well as its cyclic permutationas these give the leading- (31)

order contribution. In fact, the integrand vanishes at these
saddle-point values and care should be taken to expand thierforming the integration explicitly, we arrive at our final
integrand further when calculating the contribution from theformula for complex Hermitian case:
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PC) = E : Lot . . det Y2\l — ﬂz)o(f dxze—(i/2))\bx;x2+(i/2)xgl:12x2,
[C=3({Chortt{Ca) 1+ (Losr+Tq) (39)

+ 2T y(Tor+Tg)? . whereT stands for vector transpose. As for the determinant
{[C—3({C)oii+{(C)q) 1%+ (T i1+ T 9)?}? in the numerator, we can use the same Gaussian integral Eq.
(15) over anticommutingGrassmannignN-component vec-
32 tors x.x'. Substituting these integral representations to Eq.
(36) and performing the ensemble averaging over GOE ma-
IV. REAL SYMMETRIC MATRICES: pg=1 trix |:|2, with the help of identity

We again need to evaluate the ensemble average as in Eq. <eii/2Tf[|:|A]>GOEo<e—(<72/32N)Tr(AT+A)2’ (39)
(7), but this time for the real-valued perturbativnand real-
valued eigenvectorg , so that the quamityiTl\“/szEWk isa one can satisfy oneself that the resulting expression takes the
real variable. As before we deno@(A\(V~\(#)=b, and  form
use the integration over an auxiliary real variakje

dx;,dx,dyxdx'e” (i12) (X + Appxa = Ax )

2 dxy
e 'bkwk?\gf Sel0inan,(33) 2

xexp,’ Tr[Q2]+ <x 0% agx!
combined with the fact thdtcf. Eq. (11)]

A N X . X (X1 ® X1 +Xo@XD) X { - (40)
f dVexp — — Tr(VV')—i TV Y, Xe(Vie® Vi)
=1

20'2
2 N
(o)
o] - 75 %, 4

because of the orthogonality of eigenvectors. Consequently,
we easily perform the Gaussian integral oxgrand obtain  Now we again use the “decoupling” of the quartic term in
Grassmann variable§the simple Hubbard-Stratonovich
det?(AMIy—H,) transformation Eq(18)] and then perform the Gaussian in-
' tegration over anticommuting variables explicitly. The latter

In this expression we introduced a positive definite matrix

(34 A ( XXy XIXZ)
=l o7 T, |-
XpX1  XpXo

(e ) )y,

det’? )\i(1)+% Iy—H» yields the determinant factor
ol
(39  go\. o? . N
det | iN— \/_N Int m(x1®x1+x2®x2) . (42
as before we denoted=202x.
H 1)— 1 v —
After denoting \{=\ and \{"+ix/N=\,, for a less  Thjs factor can be brought to a simpler form
cumbersome expression, we then proceed with calculations
of the averagg- - - )y, in Eq. (35). To be able to employ the qo N-2 go\. o2 (XIX1 xIx2>
revious technique foB=2 case we first rewrite iN—— det | iN——=]|l,+==
P que 1P ( m) ( m) TN LoG X,
det?(Ny—Hy) de( N y—H)) (42)
det®(\ply—Hy)  det(Nyly—Ho)det?(Ny—Hy) by noticing that K& &x]i+x®x3)=XX", where X
(36) =(X1,X9) is NX 2 rectangular matrix, and using the identity

. ST ST - A
Assuming, for definitenesg,<0, and also assuming that det(ly—XX7) =det(l, = X'X), then recog?lzmg thaQ in
\ has an infinitesimal negative imaginary part we can reprelfoduced by us above is jusb2 matrix X'X. We see that

sent the two factors in the denominator as Gaussian integral§€ resulting expression depends on the vectggnly via
over realN component vectors; ,: the matrixQ. In recent paper§l3] it was shown that the
integration overx, , under these conditions can be replaced

by that overQ, with an extra factor d@™ =32 arising in

the integration measure. After some straightforward manipu-
lations we arrive at the following integral representation for
and the required ensemble average:

det’llz()\IN—ﬂz)OCJ dxle—(i/Z)xxIx1+(i/2)x}ﬁ|2x1 (37)
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N

N—-2

o 2 i
(- )i, fﬁxdq e fQ>0deetQ(N3)’2exp[ - g—N O - |§ Tr[(i)

d{(j_ﬁ

Introducing the variablege= —i\ + (qo/+/N) and sz(UZ/ZN)Q and shifting the contour of integration in such a way
that the integral oveqr goes along the real axis, we can rewrite the above expression as

. qo
IN——
N

I

I2+mQ . (43

* o (NJ2 12 A _ N oA
<~~->ﬁ2°<J7wquq§ =N )(qF*'”J dQp detQy™ 2 def —ggl,+ Q]

Qp>0
N _ ., iN_[.(x 0
X ex _ﬁTr[Qb]_;Tr Q| ik (44

At the next step we introduce appropriate polar coordinate&xplicitly, we can parametrize
in the space of matrice®,>0:

cos¢ sin¢>

p; O A
)O, dQpe<|p1— P2/ dp1dp,dO, O:(—sind) cosp

Q= OT( 0 p2
(45)

where p; ;>0 and O are 2xX2 real orthogonal matrices: anddO=d¢/(27). Substituting these expressions into Eq.
O TO=1,, with dO being the corresponding Haar’s measure.(44) and after obvious manipulations we get

2T _ 0 % % © —
< def(\ H)> :CNe(N/(rz))\zf doe e*(N/UZ)(q,2:+2i)\q|:*rrzanF)f dle' dp2—|pl P4
] 0 0
H

det®\ply—H) o (p1p2)*?

X (0= P1) (0 — P2) Ix( Py, pp)e” (V2P +£(p)], (46)
|
where we reinstated, =\ +ix/N, X=203x, and def2(\T—F1)
24 o 2 2 X
L(p)=p?+2ixp—a?np, det )\+|N Iy—H i
N—o
2 o2

Ix(Pl,pz)=f d¢eX(Uz/UZ)[(P1+pz)—(Pl—pz)COSZﬁ] :exp{x[_i)\_f_,/ZO-Z_)\z] _2) ] (47)

g

It is easy to repeat the calculation for-0 and find that for
and, as beforeCy stands for the accumulated constant fac-any real value ok the result can be written as

tors. So far all expressions were valid for finite-size matrices.

WhenN—w the integrals in Eq(46) are evaluated by the detANTy—H)

saddle-point method. For the bulk of the GOE spectium M

<\20°, the relevant saddle points ar@3%=(—i\ det’? [ N +i N IN—H}

+202—=\?)/2 andqEP=(—i\ = 207 —\?)/2. Again only N—o

the choicegiP=(i\ + 202 \?)/2 yields the leading-order o2

contribution, due to presence of the factogg { p; ) in the =exp{ —i)\x—z - |X|Trp()\)0'§] , (48
integrand. Substituting this choice into the integrand in Eq. o

(46) and evaluating the Gaussian fluctuations around th _ 2 7 ;
saddle-point values finally yields Z":ﬁ;ﬁy”fg‘r)eégm)ﬂ” A" is the mean eigenvalue
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We see that in the large-size linit— the expression where the mean valug)y=—\(o%/c?) and the character-
for the level curvature distribution induced by purely off- jstic Widthsrdzwp()\)gi_
diagonal random coupling between the two subsystems is ~ The curvature distribution, accounting for both the diago-
essentially the same Cauchy-Lorentz distribution for hgth nal and the off-diagonal perturbations of two decoupled sub-
=2 andB=1 cases, up to rescaling of the widths and thesystems, can be found as the convolution of two distribu-

mean value with a simple factor 2: tions:
1 o3mp(\) PO= | dCPangCPo(c-C) (58
Poff(c):; 72 ) (49 .
92 212
(C_ )‘; +[mp(N)o3] and in this way we arrive at the final formula for the real

symmetric case. We present it below for the central point of
We give a more detailed discussion of this issue in the nexi€ Spectrum =0:

section. 2
The distribution of curvatures induced by the block- _ i ” 'y Do
. G . P(C)= 2 dCr— 3 312 2,12 ° (55)
diagonal contributions), [the termCy; in Eq. (5)] for real T T[CIHTGI™ (C—Cp) + g
symmetric matrices is quite different from that of complex
Hermitian ones. PerforAming the ensemble average over the  \ NUMERICAL RESULTS AND DISCUSSIONS
Gaussian distribution af;, Eq. (4) and employing the same , ) ,
methods we find the result to be In the present section we compare the derived analytical
form of the curvature distribution with the results of direct
_ ()\_(1)_)\(k1))1/2 numerical simulations of the ensemble. For our numerical
<e—|xcli>31: H L e (50) investigations we used a normal random distribution that was
Sal e I)(_l_)\(l)} adopted fromFORTRAN Numerical Recipe$17] and to find
' N k the eigenvalues we superseded some subroutines from

LAPACK [18]. To avoid the necessity of unfolding the spectra
with x,=203x. The averaging over the joint probability we took into account only levels around the central part of

density of N—-1) GOE eigenvalues the spectrum. Namely, for a 18AL00 matrix, ten middle
ANBL O ADAD A which are different from the  eigenvalueg20 or more for larger matricgsvere considered
eigenvaluer!) whose curvature we address, shows thatat each time step, and a curvature value for each eigenvalue
[7,8] was calculated by a second difference equation
e —(NI262)\2 N (&)=
<e IXClI>31":|10Ce (N/25“)\ |( | 0
Ni(—2g)+16N(—&)—30N;(0) +16N(g)—Ni(2¢)
|det( A — H)|det2(\ —H) = ' > ' =
iX ' 12e
det’? A + Wl—H) (56)
N—1

(51) The choice of five points instead of the usual thfBgwas
made to ensure the stability of the results, especially for the
whereH is a (N—1)X (N—1) GOE matrix. GOE case of our system. The empirical choice;qf0.00l
The averaging of the ratios of determinants in Eg1)  Was an outcome of a number of trials; the values it takes may
can be donemutatis mutandisby the same technique as be system specific. We finally remark that using larger ma-
above. However, the presence of the absolute value of théices, e.g., 4081400 did not improve the quality of plots
determinant makes accurate calculation to be quite lengthgonsiderably.
and it will be presented e|sewhere, but the result is Compact The normalized results of the simulations are presented in

and it is given by[7,8] Figs. (1) and(2). To compare them with the analytical pre-
dictions, for the GUE-like casg=2 we consider Eq(32) at

—i . —j 0.2 0.2 = = . i i I I -

(e IXClI)jl’l:Il: 7TP(>\)U§|X|9 inx(os/ )K1(|x|7rp()\)of), A=0 ando=1. It is also convenient to use the dimension

less curvatureg obtained fronC by rescaling the latter with
(52 the variance of “level velocity” agcf. Ref.[7])

with K,(z) being the MacDonald function of the order one. A
Such an expression yields, after the Fourier transform, the K=C—T 2T (57)
Zakrzewski-Delande formula fgg=1: _ dAj
de
1 I3 . . .
Paiag(CO) =5 PRSI (53) whereA=om\2/N is the mean level spacing of a single
2 [(C=(C)a)*+Tg] subsystem ak =0. After some simple calculation, the first-
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FIG. 1. Normalized GUE curvature distributions for a few se-  FIG. 2. Normalized GOE curvature distributions for a few se-
lected values of r=c0%0? (intercoupling to intracoupling lected values of = g3/ o2. The solid lines are analytical predictions
strengthg bottom plot(log-log scal¢ shows the tail behavior of the superimposed over numerical data plots.
same distribution.

) _ - 5 - seen for <1 when intrasubsystem coupling appreciably ex-
order perturbation theory give§(d\i”/de)*)=20°01/N  ceeds the intersubsystem one. The crossover curvature value
and is independent of intersubsystem coupling strerogth between the two regimes of decay is approximate|y de-
As a result of the rescaling, the curvature distribution acscribed by the expression
quires the form

1

2

: (59

2 ri2 (1+r1)2 mﬁﬁ(
PO erarng Teraenm)

controlled by the only parameter o%/(rf, i.e., the ratio of which can be obtained by equating the large-curvature tails
the intersubsystem to the intrasubsystem coupling strengthgriginating from the two competing terms in the expression
Superimposing the plots of this expression over the approEq. (58). For curvatures in the interval<dx< k= 2/,
priately normalized numerical data shows good agreemerihe behavior is GUE-like, changing to a slower Cauchy-
for all corresponding values of the parametedespite the Lorentz decay ak> k.= \/2/r. It is also easy to verify that
noise in the large curvature tails. For curvatures exceedinthe maximal value of the distributioR,,,=P(0) always
the typical valuex>r+1 the distribution shows a power- decreases with the increasing ratio

law tail, the GUE-like behaviok ~* being replaced by the
Cauchy-Lorentz ong 2 with the relative growth of the ratio
r. For anyr >0 the most distant tail is always of the Cauchy- P(0)= i
Lorentz type, but intermediate GUE-like behavior is clearly ™

11
r+1 (r+1)2

(60)
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For the case of GOE, a similar rescaling of curvatures atenter of the distribution, whereas the tails agreed well. Al-
A=0 ando =2 leads from Eq(55) to the expression though, our oversimplified model clearly cannot be consid-
ered as adequate for describing the actual experimental situ-
1 ation, we nevertheless mention that the choicersf0.2
Pl)=5— X . (61)  allows matching the drop of the peak value with the experi-
27— (X2 +1)32 12+ (x— k)2 mentally observed deviation and produces an overall good
agreement with the experimental curve.

We plot this distribution superimposed over the numerical As we already noted in the text of the paper, and as
data for various values af. Again, they agree rather well clearly seen from the numerical log-log plots, the limiting
with the numerics and a crossover behavior from GOE-likdargeN curvature distribution due to purely off-diagorai-
tail to Cauchy-Lorentz one can be seen clearly for small tersubsystepn perturbations turned out to have the same
e.g.,r=0.05. Cauchy-Lorentz form irrespective of the underlying symme-

In fact, one may notice from our plots that decrease irtry, for both =2 and=1. Below we give an alternative,
maximal value of the distribution starts to be noticeable atheuristic derivation of this fact, which sheds some light on
much smaller values afthan the modification of tail behav- the origin of such a behavior. The starting point for our
ior at not very large values of. This fact qualitatively cor- analysis is expression E¢L3) for =2 or Eq.(35) for B
roborates with the experimental observations in quartz=1. Denoting )\i(l)z)\, as in the text above, we rewrite
blocks[9], where noticeable deviations were detected in thehose formulas as

%@ 1 r

N (A=A BI2 N i 1 B2
I1 = =/ Il |1-% =
k=1 ix k=1 N ix
A — | =Nk N+ — ] —Nok
N |:|2 N ’:|2
N .~
B IX 1
=/ exp|] = In| 1—— =
P N ix
N = Nok
N i,
N L~
B IX 1
~ [ exp— = — = 62
P> gl N = (62)
A — | = Noy
N f,

At the last step we made a plausible assumption that th&inction, the mean eigenvalue density. The latter function is

above in expression the limit of largécan be approximated just given by the Wigner semicircular lawpgd(u)

by expanding the logarithms in the exponential to the firSE(Z/wMﬁgm for |u|<pse, Where ug=8a? for

nonvanishirjg term. Now we introduce @&xacteigenvalue GUE andu= y242 for GOE. All these facts suggest that in

density forH, as the limit of largeN the ensemble average in E4) can be
suppressed in favor of replacing the exact density with its

N .. . .
. i S S(u— 63 semicircular form. Moreover, singg () is a smooth func-
Pl)= P 2K 63 tion, in the limit of N— = we can use the Sohotsky formula
where §(x) stands for the Dirac delta function. In terms of B 1
this density the ensemble avera@?) can be rewritten as lim f dups 1) -
N—oo v/ ~ Mg
AN+ —|—n
B~ N
exp —I§Xf dup(w) = (64)
NN P Qppad ) 1 ORIV
~ = -~ .~ aa y
N A, e MPsc M (A=) g Psc

Now, we use the well-known fact that the exact eigenvalue (65)

density for random matrices &elf-averagingwhich means
in the limit N—co it converges to anonrandomsmooth  where the first term is understood as a principal value inte-
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gral, and sgn stands for the sign function of the argument. Iver, it is easy to understand that to arrive at the correct
fact, with some effort the integral can be evaluated explicitly:expression Eq(29) one needs to take into accowsublead-

2
Hsc VMsc™ IU’Z _

f_ﬂscdf‘w—

Collecting all terms we see that

de{
I
2

2
P

T s

= (66)
Msc

de(\iy—F) ]%?

)\+'X
'N

o

N—oo

~2N
IX—+ X[ mpsd(N)
Msc

}, (67)

ing terms—those of the order of unity in the exponential.
This goal goes beyond the simple use of self-averaging, and
requires a much more detailed treatment. It is not clear at the
moment how to implement such a treatment in the present
heuristic scheme. That is why the supersymmetrization
method, which yields fully controllable results in all cases
should be in general preferred.

In conclusion, we have derived exact expressions for the
distribution of level curvatures in a model describing a mix-
ing of two independent spectra by a generic perturbation.
Although the model is too simple to describe actual experi-
mental situation in systems with partially broken symme-
tries, some features of the behavior of our curvature distri-
bution may play a role of useful analogy helping to
understand the deviations in experimentally measured level

which coincides with the earlier derived expressions in Eqsqryature distribution of the acoustic resonances of quartz

(24) and (48).

blocks[9]. Indeed, the maximum value of the latter distribu-

It is natural to expect that such a derivation can be madg \as found to be considerably lower than that predicted
mathematically rigorous. However, despite its simplicity andg, pure GOE case, whereas the tail shows g6od decay.

conceptual clarity, such a method cannot be straightforryis agrees qualitatively with our observation that the peak

wardly applied to evaluation of the more complicated aver
ages such as those in Eq27) and (51). Indeed, the appli-
cation of the outlined procedure to E(R7) amounts to
approximating the extra determinant factor in the lakye-
limit as

2 Msc
IN—P|  dupé—u’

Thse ~ ~Hsc

def(A\y— H2)~exp{

XIn(\— ,,L)} NS (68)

which is indeed a correct expression up to kadingorder

‘value of the curvature distribution might be more sensitive to
remnant symmetries than the power law tail behavior.

In fact, an ideal experimental realization of our model
may be the system of two superconduction microwave bil-
liards coupled by an antenna in a variable wag]. Al-
though, in real experiments of this type the coupling was
changed in large discrete increments, it is in principle pos-
sible to change it in a much more controllable way, and to
study level dynamics induced by such a coupling. We hope
that our results may stimulate experiments of this sort.
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