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Level curvature distribution in a model of two uncoupled chaotic subsystems

Güler Ergün* and Yan V. Fyodorov†

Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, United Kingdom
~Received 18 March 2003; published 22 October 2003!

We study distributions of eigenvalue curvatures for a block-diagonal random matrix perturbed by a full
random matrix. The most natural physical realization of this model is a quantum chaotic system with some
inherent symmetry, such that its energy levels form two independent subsequences, subject to a generic
perturbation which does not respect the symmetry. We describe analytically a crossover in the form of a
curvature distribution with a tunable parameter, namely, the ratio of intersubsystem/intrasubsystem coupling
strengths. We find that the peak value of the curvature distribution is much more sensitive to the changes in this
parameter than the power-law tail behavior. This observation may help to clarify some qualitative features of
the curvature distributions observed experimentally in acoustic resonances of quartz blocks.
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I. INTRODUCTION

Studies of statistical properties of complex quantum s
tems~chaotic or disordered! show that their eigenvalue spe
tra exhibit patterns of universal fluctuations, whose struct
mainly depends on the fundamental symmetries of
Hamiltonian @1,2#. Such a universality opens an attracti
possibility of modeling the fluctuations by comparing the
with those observed in long sequences of eigenvalues of
dom matrices of appropriate symmetry@3,4#. Namely, sys-
tems with no time-reversal invariance are known to be
equately described by Gaussian unitary ensemble~GUE! of
complex Hermitian matrices, and systems with time-reve
invariance are described by Gaussian orthogonal ensem
~GOE! or Gaussian symplectic ensemble of real symme
or complex quaternion matrices, depending on the existe
of strong spin-orbit coupling.

More recently, the interest in studying spectral statistics
quantum chaotic systems was much revitalized by the un
standing that their energy spectra display a universal cha
in their characteristics as a response to external perturba
of various kinds. The nature of the perturbation may va
considerably depending on the physical system, and usu
involves application of external fields~magnetic or electric!,
change of boundary conditions or the shape of the syst
rearrangement of positions of impurities in disordered m
dium, or variation of temperature, pressure or any other t
able physical characteristics.

One of the frequently used measures of parametric se
tivities of complex quantum systems is the distribution
level curvatures, which is defined as the second-order der
tive of eigenvalues with respect to a perturbation parame

In Ref. @5# Gaspard and coauthors developed express
for the probability densities of level curvatures and fou
that the large curvatures must exhibit universal behav
classified according to the underlying gross symmetries.
deed, the curvatures become large in the vicinity of avoid
crossings of energy levels as functions of a parameter
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their distribution can be simply related to that of small e
genvalue spacings. On the basis of extensive numerica
vestigations of both random matrices and several quan
chaotic systems, Zakrzewski and Delande conjectured
analytical expression for the full distribution of curvatur
@6#. Later on, Zakrzewski-Delande formulas were deriv
analytically by von Oppen@7# and by Fyodorov and Som
mers @8# for the random matrix models of all three unive
sality classes.

However, in many relevant experimental circumstanc
physical systems have accidentally more underlying sym
tries~frequently called ‘‘geometric’’! acting in addition to the
presence or the absence of the time-reversal invariance. S
symmetries naturally induce classification of energy lev
according to irreducible representations of the correspond
symmetry group, and the energy levels corresponding to
ferent representations form statistically independent sub
quences. Only these subsequences may be then meaning
compared with the universal random matrix patterns. In fa
a generic situation may be even more complicated, si
geometric symmetries may not be exact, but approxim
This will clearly lead to spectra being a mixture of differe
subsequences with uncertain statistical consequences of
tual interference.

Recent experimental studies on acoustic resonance sp
in quartz blocks@9,10# suggest that the system may fall in
the latter category, and the deviations from standard theo
ical predictions of parametric correlations may have th
origin in remnant geometric symmetries. This fact motivat
several groups to investigate the effects of partial symme
breaking on the level curvatures@11,12#. However, closed
form analytical expressions for curvature distributions for t
case of partly broken symmetries are not available, to
best of our knowledge.

In the present paper we consider a simpler, but rela
model. Rather than studying level curvatures in a syst
with partly broken symmetry, we address the case of t
noninteracting subsystems subject to a perturbation wh
induces both coupling between the subsystems and varia
of parameters within each of the two subsystems. T
should be generically the case for a perturbation which d
not respect the underlying symmetry. Of course, we do
©2003 The American Physical Society24-1
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claim our simple model to be adequate for describing exp
mental situation in quartz blocks, but we rather hope that
results could help in indicating how various factors may
fect the shape of level curvature distributions.

Employing the random matrix calculations allows one
derive exact expressions for the level curvature distribut
as a function of relative weight of induced intrasublattice a
intersublattice osculating variations. The curvature distri
tion naturally interpolates between the simple Cauc
Lorentz shape—characteristic for pure symmetry-break
perturbations which couple two subsystems without mod
ing them individually—and the Zakrzewski-Delande form
las typical for perturbations respecting the underlying sy
metry.

We first treat a simpler case of complex Hermitian ma
ces~systems with broken time-reversal invariance! in detail,
and then extend the derivations to the case of real symm
matrices. Our analytical calculations are supported and
roborated by accurate numerical simulations of random
trix ensembles.

II. GENERAL RELATIONS

To study the parametric dependence of energy levels
system with some underlying symmetry, we consider a r
dom matrix model where the HamiltonianH of the system
linearly depends on a perturbation parameter«:

H~«!5Â1«B̂. ~1!

For the unperturbed HamiltonianÂ we choose a block-
diagonal matrix

Â5S Ĥ1 �
� Ĥ2

D ,

with Ĥ1,2 beingN3N random matrices~complex Hermitian
or real symmetric! taken either from GUE or, respectivel
from GOE. These can be thought of as representing
noninteracting chaotic subsystems. That means, we con
the matricesĤp as random Gaussian, with entriesHi . j being
independent and identically distributed variables with me
zero and varianceŝH̄ i j Hi j &52s2/N for the GUE case (b
52) and ^Hi j

2 &5s2/2N for GOE case (b51). The joint

probability density forĤp is then written as

P~Ĥp!5CN
b expH 2

N

2bs2
Tr Ĥp

2J , ~2!

whereCN
b is the appropriate normalization constant.

We introduce an interaction between blocksĤ1,2 by con-
sidering a general coupling matrix

B̂5S Ĵ1 V̂

V̂† Ĵ2
D .
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We assume here thatĴ1,2 have the same symmetry properti
as the diagonal blocksĤ1,2 and their probability densities ca
be written as

P~ Ĵp!}expH 2
N

2bs1
2

Tr Ĵp
2J . ~3!

As for the off-diagonal blocksV̂, they represent genera
Gaussian random matrices~complex forb52 or real forb
51) with no further symmetry constraints imposed. T
probability density forV̂ is then chosen for both cases to b

P~V̂!}expH 2
N

2s2
2

Tr V̂†V̂J . ~4!

Models of this kind were previously employed with satisfa
tory results in the analysis of data relative to symme
breaking in nuclear physics@14#.

We denote the eigenvalues and corresponding eigen
tors of Ĥp by @l i

(p) ,vi
(p)# with p51,2. This implies that

Ĥpvi
(p)5l i

(p)vi
(p) where i 51, . . . ,N and vi

(p)†vi
(p)51. Our

main goal is to find the distribution of level curvatures, d
fined as the second-order derivative of eigenvalues ofH with
respect to the perturbation parameter«. Employing in the
usual way the second-order perturbation theory we can w
the expression for the curvature corresponding, say, to
eigenvalue that for«50 coincides with the~unperturbed!
eigenvaluel i

(1) as

Ci5(
kÞ i

N
~vk1

† Ĵ1vi1!~vi1
† Ĵ1

†vk1!

l i
(1)2lk

(1)
1 (

k51

N
~vi1

† V̂vk2!~vk2
† V̂†vi1!

l i
(1)2lk

(2)
.

~5!

This expression shows that there are generically two con
butions to the level curvatures. The first sum is essenti
the level curvature induced by theblock-diagonalpart of the
perturbation which does not lead to any mixing between l
els of the two noninteracting subsystems. Taken alone,
term ~which we will denote here asC1i) must, therefore,
yield the Zakrzewski-Delande curvature distribution. In co
trast, the second sum that will be denoted asC2i reflects the
influence of the off-diagonal perturbation, which mixes t
levels of two subsystems.

Then the distribution of the total curvatures is defined
P(C)5^d(C2C1i2C2i)&H and it can be conveniently written
using the Fourier transform as

P~C!5
1

2pE2`

`

dxeixC^^e2 ixC1i& Ĵ1
^e2 ixC2i& V̂&Ĥ1 ,Ĥ2

. ~6!

The first factor^^e2 ixC1i& Ĵ1
&Ĥ1

is just the Fourier transform
of the known Zakrzewski-Delande expression, hence the
culation of the curvature distribution reduces to evaluat
the remaining factorŠ^e2 ixC2i& V̂‹Ĥ2

. Our next goal is to de-

rive the corresponding expressions, first forb52 and then
for b51.
4-2
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III. COMPLEX HERMITIAN MATRICES: bÄ2

We are going to evaluate the following ensemble aver
@see Eq.~5!#:

K expS 2 ix (
k51

N
1

l i
(1)2lk

(2) ~vi1
† V̂vk2!~vk2

† V̂†vi1!D L
V̂,Ĥ2

.

~7!

First we perform the average overV̂. To simplify the nota-
tion we denotex/(l i

(1)2lk
(2))[bk , vi1

† V̂vk2[wk and use the
identity

e2 ibkw̄kwk52
i

bk
E dZ̄kdZk

2p
e( i /bk)Z̄kZk2 i (Zkwk1Z̄kw̄k), ~8!

where the integration is taken over an auxiliary comp
variableZk . This allows one to rewrite Eq.~7! in the follow-
ing form:

K )
k51

N S 2
i

bk
D E dZ̄kdZk

2p
e( i /bk)Z̄kZk2 i (Zkwk1Z̄kw̄k)L

V̂,Ĥ2

.

~9!

Explicitly, employing the distribution function in Eq.~4!, we
need to calculate the integral

E dV̂dV̂†expH 2
N

2s2
2
Tr~V̂V̂†!2 ivi1

† V̂S (
k51

N

Zkvk2D
2 i S (

k51

N

Z̄kvk2
† D V̂†vi1J . ~10!

It is convenient to introduce anN3N matrix Ĝ
5((kZkvk2) ^ vi1

† , so that, when used in the former identi
relation, we get

E dV̂dV̂†e2(N/2s2
2)Tr(V̂V̂†)2 iTr(V̂Ĝ1Ĝ†V̂†)}e2(2s2

2/N)Tr(Ĝ†Ĝ),

~11!

which is a generalization of Eq.~8!. We further use

Tr~Ĝ†Ĝ!5~vi1
† vi1!(

k%
Z̄kZ%~vk2

† v%2!, ~12!

and recall thatvi1 are eigenvectors ofĤ1 andvk2 are those of
Ĥ2. Using the orthogonality of the eigenvectors,

vk2
† v%25H 1, k5%

0, kÞ%

andvi1
† vi151 gives the result for the average in Eq.~9! as
04612
e

x

K )
k51

N E dZ̄kdZk

2p ibk
e22s2

2/NZ̄kZk1( i /bk)Z̄kZkL
Ĥ2

}K det~l i
(1)I N2Ĥ2!

detF S l i
(1)1

i x̃

N
D I N2Ĥ2G L

Ĥ2

. ~13!

For this we also performed the Gaussian integrations oveZk

explicitly, and denotedx̃52s2
2x.

In what follows, we denotel i
(1)[l andl i

(1)1 i x̃/N[lb

and proceed with calculations of the average^•••&Ĥ2
in Eq.

~13! by employing a technique suggested in Ref.@13#. In
fact, for b52 the averages of the ratios of determinants
known in full generality for any value ofN @13,15#. Never-
theless, we outline the corresponding calculation in orde
introduce the method and the convenient notation which w
be used later on in this paper for the more complicated c
b51.

Using the standard ‘‘supersymmetrization’’ idea@16#, we
represent the denominator of the expression to be avera
as a Gaussian integral~we assume herex.0 for definite-
ness!

det21~lbI N2Ĥ2!5
1

i NE dSdS†e( i /2)lbS†S2( i /2)S†Ĥ2S,

~14!

with a complex N-dimensional vectorS5(S1 , . . . ,SN)T,
whereT stands for the vector transpose. For the determin
in the numerator, we use Gaussian integrals over antic
muting ~Grassmannian! N-component vectorsx,x†, which
gives

det~lI N2Ĥ2!5
1

i NE dxdx†e( i /2)lx†x2( i /2)x†Ĥ2x. ~15!

Substituting the relationsx†Ĥ2x52Tr(Ĥ2x ^ x†) and
S†Ĥ2S5Tr(Ĥ2S^ S†) in the integral yields

^•••&Ĥ2
5E d2xE d2Se( i /2)[lx†x1lbS†S]

3^e2~ i /2!TrĤ2[S^ S†2x ^ x†]&Ĥ2
. ~16!

The ensemble average over GUE matricesĤ2 can be easily
performed by exploiting the identity

^e2( i /2)Tr[ĤÂ]&GUE}e2(s2/4N)Tr@Â2# ~17!

and ‘‘decoupling’’ the quartic term in Grassmann variabl
with the help of simple Hubbard-Stratonovich transform
tion:

e(s2/4N)(x†x)2
5E

2`

` dq

A2p
e2(q2/2)2(qs/A2N)x†x. ~18!
4-3
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After some straightforward manipulations we arrive at t
following integral representation for the required ensem
average:

^•••&Ĥ2
5E d2Se2(s2/4N)(S†S)21( i /2)lbS†S

3E
2`

` dq

A2p
e2(q2/2)

3detF1

2 S il2
qs

N/2D Î N2
S^ S†

2N/s2G . ~19!

Introducing the variableqF5 il2qs/AN/2 and shifting
the contour of integration in such a way that, the integ
over qF goes along the real axis, we can rewrite the abo
expression as

^•••&Ĥ2
}E

2`

` dqF

A2p
e2(N/4s2)(qF2 il)2

3E d2Se(s2/4N)(S†S)21( i /2)lbS†S

3detFqFÎ 2
s2

N
S^ S†G , ~20!

where we shifted the contour forqFP(2`,`) to be real.
Further simplification can be made by noticing that theN
3N matrix S^ S† is of rank unity, i.e., it has (N21) zero
eigenvalues, and only one nonzero eigenvalue equa
(SS†). Then the determinant in the previous expression i

detFqFÎ 2
s2

N
S^ S†G[qF

N21S qF2
s2

N
SS†D . ~21!

Finally, we introduce polar coordinatesS5rn with n†n51
and *d2S5r 2N21dr dn, where *dn5VN produces a con-
stant factor, which corresponds to the area of
2N-dimensional unit sphere. Further introducingp5r 2 and
changingp→Np/s2 and then following with the obvious
manipulations we get

K det~l Î N2Ĥ !

det~lbÎ N2Ĥ !
L

Ĥ2

5CNe(N/4s2)l2E
2`

` dqF

A2pqF

3e2(N/4s2)(qF
2

22ilqF24s2ln qF)

3E
0

` dp~qF2p!

A2pp
e2x(s2

2/s2)p

3e2(N/4s2)(p222ilp24s2ln p), ~22!

where we reinstatedlb5l1 i x̃/N, x̃52s2x andCN stands
for the accumulated constant factors. The latter can alw
be restored by noticing that whenlb5l the right hand side
must yield unity identically.
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So far all the expressions were valid for finite-size ma
ces. WhenN→` we expect the results, when appropriate
scaled, to be universal, i.e., broadly insensitive to the det
of the distribution of random matrices and applicable
quantum chaotic systems. In such a limit the integrals in
~22! can be evaluated by the saddle-point method. Fol
<A8s2 ~ the so calledbulk of the spectrum! the relevant
saddle points~sp! are psp5( il1A8s22l2)/2 and qF

sp

5( il6A8s22l2)/2. It is easy to see that only the choic
qF

sp5( il2A8s22l2)/2 yields the leading-order contribu
tion, due to the presence of the factor (qF2p) in the inte-
grand. Substituting this choice into the integrand in Eq.~22!
and evaluating the Gaussian fluctuations around the sad
point values finally yields

K det~l Î N2Ĥ !

detF S l1 i
x̃

N
D Î N2ĤG L U

N→`
x.0

5expH 2
x

2
@ il1A8s22l2#S s2

s D 2J . ~23!

It is easy to repeat the calculation forx,0 and find that for
any real value ofx the result can be written as

K det~l Î N2Ĥ !

detF S l1 i
x̃

N
D Î N2ĤG L U

N→`

5expH 2 ilx
s2

2

2s2
22uxupr~l!s2

2J , ~24!

where r(l)5(1/4ps2)A8s22l2 is the mean eigenvalue
density for GUE.

The Fourier transform of the above expression with
spect tox immediately gives us the distributionPo f f(C) of
level curvatures induced by purely off-diagonal random co
pling V̂ between the two subsystems. In the large-size li
N→` we therefore have

Po f f~C!5
1

p

2s2
2pr~l!

S C2l
s2

2

2s2D 2

1~2pr~l!s2
2!2

, ~25!

which is nothing else but the Cauchy-Lorentz distributi
with the mean valuêC&o f f5l(s2

2/2s2) and characteristic
widths Go f f5@2pr(l)s2

2#.
Turning our attention to the curvatures induced by t

block-diagonal contributionsĴp @the termC1i in Eq. ~5!# we
can first perform the ensemble average over the Gaus
distribution of Ĵ1, Eq. ~3!. Employing similar methods as
before, we easily find the result to be
4-4
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^e2 ixC1i& Ĵ1
5)

kÞ i

~l i
(1)2lk

(1)!

Fl i
(1)2

ix1

N
2lk

(1)G , ~26!

where in this expressionx152s1
2x. This expression remain

to be averaged over the joint probability density ofN21
GUE eigenvaluesl1

(1) , . . . ,l i 21
(1) ,l i 11

(1) , . . . ,lN
(1) which are

different from the chosen eigenvaluel i
(1) whose curvature

we address. The consideration which is exposed in R
@7,8# shows that

^e2 ixC1i& Ĵ1 ,Ĥ1
}e2(N/4s2)l2K det3~l2H !

detS l1
ix1

N
2H D L

N21

,

~27!
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whereH is a (N21)3(N21) GUE matrix.
The averaging of the ratios of determinants in Eq.~27!

can be done,mutatis mutandis, by the same supersymmetr
zation procedure as above. The detailed exposition of
corresponding calculation can be found in the paper by F
dorov and Strahov@13#. Here we briefly sketch the main
steps. After representing each of the four determinants by
Gaussian integrals~three over anticommuting and one ov
usual complex variables! one can easily perform the GUE
average by exploiting the identity Eq.~17!. Then the terms in
the exponent quartic with respect to anticommuting variab
are ‘‘decoupled’’ by introducing an auxiliary integration ove
333 Hermitian matrixQ̂, the procedure being a straightfo
ward generalization of the Hubbard-Stratonovich transform
tion ~18!. All the subsequent manipulations are quite ana
gous to those exposed above, and for our case, instead o
~22! we arrive at its analog pertinent:
K det3~l2H̃ !

det~lb2H̃ !
L

H̃

}E dQF~detQF!Ñ21expH 2
Ñ

4s2
Tr~QF2 il Î !2J E

0

`

dp pÑ21e2x(s2
2/s2)pexpH 2

Ñ

4s2
~p222il p!J

3~qF
(1)2p!~qF

(2)2p!~qF
(3)2p!, ~28!
the

-

ff-
:

al
where qF
(1,2,3) are real eigenvalues of the Hermitian 333

matrix QF and Ñ stands forN21. In fact, since Tr(QF

2 il Î )2 and detQF depend only on the eigenvaluesqF
(1,2,3),

it is convenient to use these eigenvalues and the corresp
ing eigenvectors as integration variables. In these coo
nates the integration measure is given by

dQF}dm@U#dqF
(1)dqF

(2)dqF
(3) )

1<k1,k2<3
~qF

(k1)
2qF

(k2)
!,

wheredm@U# is the invariant measure on the manifold
unitary 333 matrices, representing the eigenvectors ofQF
and the last factor is the Jacobian of the transformat
known as the Vandermonde determinant.

Again, we are interested in the limitN@1, so we neglect
the difference betweenN andN21 and omit the tilde hence
forth. The set of the saddle points of the integrand with
spect to each of the variablesp.0 andqF

(1,2,3) is psp5( il
1A8s22l2/2) andqF

sp5( il6A8s22l2/2). These saddle
points are the same as that we found earlier. However,
presence of both the Vandermonde factors and that of
product)k51

3 (qF
(k)2p) makes us select the following sadd

points:

qF
(1)5

il1A8s22l2

2
, qF

(2)5qF
(3)5

il2A8s22l2

2

~as well as its cyclic permutations! as these give the leading
order contribution. In fact, the integrand vanishes at th
saddle-point values and care should be taken to expand
integrand further when calculating the contribution from t
d-
i-

n,

-

e
he

e
the

Gaussian fluctuations around the saddle points~see Ref.@13#
for a general procedure!. The final result is given by

^e2 ixC1i& Ĵ1 ,Ĥ1
5@112pr~l!s1

2uxu#

3expH 2 ilx
s1

2

2s2
22uxupr~l!s1

2J .

~29!

Taking the Fourier transform, we, as expected, arrive at
Zakrzewski-Delande formula forb52:

Pdiag~C!5
2

p

Gd
3

@~C2^C&d!21Gd
2#2

, ~30!

where the mean valuêC&d5l(s1
2/2s2) and the characteris

tic widths Gd5@2pr(l)s1
2#.

Now we know all the factors in Eq.~6! and can find the
curvature distribution accounting for both diagonal and o
diagonal perturbations of the two decoupled subsystems

P~C!5E
2`

` dx

2p
eixC@11Gduxu#

3expH 2 ix
l

2s2
~s1

21s2
2!2uxu~Go f f1Gd!J .

~31!

Performing the integration explicitly, we arrive at our fin
formula for complex Hermitian case:
4-5
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P~C!5
1

p H Go f f

@C2 1
2 ~^C&o f f1^C&d!#21~Go f f1Gd!2

1
2Gd~Go f f1Gd!2

$@C2 1
2 ~^C&o f f1^C&d!#21~Go f f1Gd!2%2J .

~32!

IV. REAL SYMMETRIC MATRICES: bÄ1

We again need to evaluate the ensemble average as in
~7!, but this time for the real-valued perturbationV̂ and real-
valued eigenvectorsvi , so that the quantityvi1

T V̂vk2[wk is a
real variable. As before we denotex/(l i

(1)2lk
(2))[bk and

use the integration over an auxiliary real variablexk :

e2 ibkwk
2
52A i

bk
E dxk

2p
e( i /4bk)xk

2
2 ixkwk, ~33!

combined with the fact that@cf. Eq. ~11!#

E dV̂ expH 2
N

2s2
2

Tr~V̂V̂T!2 i TrV̂(
k51

N

xk~vk2^ vi1
T !J

}expH 2
s2

2

2N (
k51

N

xk
2J ~34!

because of the orthogonality of eigenvectors. Conseque
we easily perform the Gaussian integral overxk and obtain

Š^e2 ixC2i&V‹H2
}K det1/2~l i

(1)I N2Ĥ2!

det1/2F S l i
(1)1

i x̃

N
D I N2Ĥ2G L

Ĥ2

,

~35!

as before we denotedx̃52s2
2x.

After denoting l i
(1)[l and l i

(1)1 i x̃/N[lb for a less
cumbersome expression, we then proceed with calculat
of the averagê•••&Ĥ2

in Eq. ~35!. To be able to employ the

previous technique forb52 case we first rewrite

det1/2~lI N2Ĥ2!

det1/2~lbI N2Ĥ2!
[

det~lI N2Ĥ2!

det1/2~lbI N2Ĥ2!det1/2~lI N2Ĥ2!
.

~36!

Assuming, for definiteness,x̃,0, and also assuming tha
l has an infinitesimal negative imaginary part we can rep
sent the two factors in the denominator as Gaussian integ
over realN component vectorsx1,2:

det21/2~lI N2Ĥ2!}E dx1e2( i /2)lx1
Tx11( i /2)x1

TĤ2x1 ~37!

and
04612
Eq.

ly,

ns

-
ls

det21/2~lbI N2Ĥ2!}E dx2e2( i /2)lbx2
Tx21( i /2)x2

TĤ2x2,

~38!

whereT stands for vector transpose. As for the determin
in the numerator, we can use the same Gaussian integra
~15! over anticommuting~Grassmannian! N-component vec-
tors x,x†. Substituting these integral representations to
~36! and performing the ensemble averaging over GOE m
trix Ĥ2, with the help of identity

^e6 i /2Tr[ĤÂ]&GOE}e2(s2/32N)Tr(ÂT1Â)2
, ~39!

one can satisfy oneself that the resulting expression takes
form

E dx1dx2dxdx†e2( i /2)(lx1
Tx11lbx2

Tx22lx†x)

3expH 2
s2

8N
Tr@Q̂2#1

s2

16N
~x†x!21

s2

16N
x†

3~x1^ x1
T1x2^ x2

T!xJ . ~40!

In this expression we introduced a positive definite matri

Q̂5S x1
Tx1 x1

Tx2

x2
Tx1 x2

Tx2
D .

Now we again use the ‘‘decoupling’’ of the quartic term
Grassmann variables@the simple Hubbard-Stratonovic
transformation Eq.~18!# and then perform the Gaussian in
tegration over anticommuting variables explicitly. The latt
yields the determinant factor

detF S il2
qs

AN
D Î N1

s2

2N
~x1^ x1

T1x2^ x2
T!G . ~41!

This factor can be brought to a simpler form

S il2
qs

AN
D N22

detF S il2
qs

AN
D Î 21

s2

2N S x1
Tx1 x1

Tx2

x2
Tx1 x2

Tx2
D G
~42!

by noticing that (x1^ x1
T1x2^ x2

T)5X̂X̂T, where X̂
5(x1 ,x2) is N32 rectangular matrix, and using the identi
det(I N2X̂X̂T)5det(I 22X̂TX̂), then recognizing thatQ̂ in-
troduced by us above is just 232 matrix X̂TX̂. We see that
the resulting expression depends on the vectorsx1,2 only via
the matrix Q̂. In recent papers@13# it was shown that the
integration overx1,2 under these conditions can be replac
by that overQ̂, with an extra factor detQ(N23)/2 arising in
the integration measure. After some straightforward mani
lations we arrive at the following integral representation
the required ensemble average:
4-6
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^•••&Ĥ2
}E

2`

`

dq e2q2S il2
qs

AN
D N22E

Q.0
dQ̂ detQ(N23)/2expH 2

s2

8N
Tr@Q̂2#2

i

2
TrF Q̂S l 0

0 lb
D G J

3detF S il2
qs

AN
D Î 21

s2

2N
Q̂G . ~43!

Introducing the variablesqF52 il1(qs/AN) and Q̂b5(s2/2N)Q̂ and shifting the contour of integration in such a w
that the integral overqF goes along the real axis, we can rewrite the above expression as

^•••&Ĥ2
}E

2`

`

dqF qF
N22e2(N/s2)(qF1 il)2E

Qb.0
dQ̂b detQb

(N23)/2det@2qFÎ 21Q̂b#

3expH 2
N

2s2
Tr@Q̂b

2#2
iN

s2
TrF Q̂bS l 0

0 lb
D G J . ~44!
te

:
re

q.
At the next step we introduce appropriate polar coordina
in the space of matricesQb.0:

Q̂b5OTS p1 0

0 p2
DO, dQ̂b}up12p2udp1dp2dO,

~45!

where p1,2.0 and O are 232 real orthogonal matrices
O TO5I 2, with dO being the corresponding Haar’s measu
c
es

r

q
th

04612
s

.

Explicitly, we can parametrize

O5S cosf sinf

2sinf cosf D
and dO5df/(2p). Substituting these expressions into E
~44! and after obvious manipulations we get
K det1/2~l Î N2Ĥ !

det1/2~lbÎ N2Ĥ !
L

Ĥ2

5CNe(N/s2)l2E
2`

` dqF

qF
2

e2(N/s2)(qF
2

12ilqF2s2lnqF)E
0

`

dp1E
0

`

dp2

up12p2u

~p1p2!3/2

3~qF2p1!~qF2p2!Ix~p1 ,p2!e2(N/2s2)[L(p1)1L(p2)] , ~46!
where we reinstatedlb5l1 i x̃/N, x̃52s2
2x, and

L~p!5p212ilp2s2ln p,

Ix~p1 ,p2!5E df ex(s2
2/s2)[( p11p2)2(p12p2)cos2f]

and, as before,CN stands for the accumulated constant fa
tors. So far all expressions were valid for finite-size matric
When N→` the integrals in Eq.~46! are evaluated by the
saddle-point method. For the bulk of the GOE spectruml
<A2s2, the relevant saddle points arep1,2

sp5(2 il
1A2s22l2)/2 andqF

sp5(2 il6A2s22l2)/2. Again only
the choiceqF

sp5( il1A2s22l2)/2 yields the leading-orde
contribution, due to presence of the factors (qF2p1,2) in the
integrand. Substituting this choice into the integrand in E
~46! and evaluating the Gaussian fluctuations around
saddle-point values finally yields
-
.

.
e

K det1/2~l Î N2Ĥ !

det1/2F S l1 i
x̃

N
D Î N2ĤG L U

N→`
x,0

5expH x@2 il1A2s22l2#S s2

s D 2J . ~47!

It is easy to repeat the calculation forx.0 and find that for
any real value ofx the result can be written as

K det1/2~l Î N2Ĥ !

det1/2F S l1 i
x̃

N
D Î N2ĤG L U

N→`

5expH 2 ilx
s2

2

s2
2uxupr~l!s2

2J , ~48!

where r(l)5(1/ps2)A2s22l2 is the mean eigenvalue
density for GOE.
4-7
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We see that in the large-size limitN→` the expression
for the level curvature distribution induced by purely o
diagonal random couplingV̂ between the two subsystems
essentially the same Cauchy-Lorentz distribution for bothb
52 andb51 cases, up to rescaling of the widths and t
mean value with a simple factor 2:

Po f f~C!5
1

p

s2
2pr~l!

S C2l
s2

2

s2D 2

1@pr~l!s2
2#2

. ~49!

We give a more detailed discussion of this issue in the n
section.

The distribution of curvatures induced by the bloc
diagonal contributionsĴp @the termC1i in Eq. ~5!# for real
symmetric matrices is quite different from that of compl
Hermitian ones. Performing the ensemble average over
Gaussian distribution ofĴ1, Eq. ~4! and employing the sam
methods we find the result to be

^e2 ixC1i& Ĵ1
5)

kÞ i

~l i
(1)2lk

(1)!1/2

Fl i
(1)1

ix1

N
2lk

(1)G1/2 ~50!

with x152s1
2x. The averaging over the joint probabilit

density of (N21) GOE eigenvalues
l1

(1) , . . . ,l i 21
(1) ,l i 11

(1) , . . . ,lN
(1) which are different from the

eigenvaluel i
(1) whose curvature we address, shows t

@7,8#

^e2 ixC1i& Ĵ1 ,Ĥ1
}e2(N/2s2)l2

3K udet~l2H !udet1/2~l2H !

det1/2S l1
ix1

N
2H D L

N21

,

~51!

whereH is a (N21)3(N21) GOE matrix.
The averaging of the ratios of determinants in Eq.~51!

can be done,mutatis mutandis, by the same technique a
above. However, the presence of the absolute value of
determinant makes accurate calculation to be quite leng
and it will be presented elsewhere, but the result is comp
and it is given by@7,8#

^e2 ixC1i& Ĵ1 ,Ĥ1
5pr~l!s1

2uxue2 ilx(s1
2/s2)K1„uxupr~l!s1

2
…,

~52!

with K1(z) being the MacDonald function of the order on
Such an expression yields, after the Fourier transform,
Zakrzewski-Delande formula forb51:

Pdiag~C!5
1

2

Gd
2

@~C2^C&d!21Gd
2#3/2

, ~53!
04612
e

xt
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where the mean valuêC&d52l(s1
2/s2) and the character

istic widthsGd5pr(l)s1
2.

The curvature distribution, accounting for both the diag
nal and the off-diagonal perturbations of two decoupled s
systems, can be found as the convolution of two distrib
tions:

P~C!5E
2`

`

dC1Pdiag~C1!Po f f~C2C1! ~54!

and in this way we arrive at the final formula for the re
symmetric case. We present it below for the central point
the spectruml50:

P~C!5
1

2pE2`

`

dC1

Gd
2

@C1
21Gd

2#3/2

Go f f

~C2C1!21Go f f
2

. ~55!

V. NUMERICAL RESULTS AND DISCUSSIONS

In the present section we compare the derived analyt
form of the curvature distribution with the results of dire
numerical simulations of the ensemble. For our numeri
investigations we used a normal random distribution that w
adopted fromFORTRAN Numerical Recipes@17# and to find
the eigenvalues we superseded some subroutines
LAPACK @18#. To avoid the necessity of unfolding the spect
we took into account only levels around the central part
the spectrum. Namely, for a 1003100 matrix, ten middle
eigenvalues~20 or more for larger matrices! were considered
at each time step, and a curvature value for each eigenv
was calculated by a second difference equation

l i9~«!u«50

5
l i~22«!116l i~2«!230l i~0!116l i~«!2l i~2«!

12«2
.

~56!

The choice of five points instead of the usual three@5# was
made to ensure the stability of the results, especially for
GOE case of our system. The empirical choice of«50.001
was an outcome of a number of trials; the values it takes m
be system specific. We finally remark that using larger m
trices, e.g., 4003400 did not improve the quality of plots
considerably.

The normalized results of the simulations are presente
Figs. ~1! and ~2!. To compare them with the analytical pre
dictions, for the GUE-like caseb52 we consider Eq.~32! at
l50 ands51. It is also convenient to use the dimensio
less curvaturesk obtained fromC by rescaling the latter with
the variance of ‘‘level velocity’’ as~cf. Ref. @7#!

k5C D

pK S dl i
(p)

d« D 2L , ~57!

where D5spA2/N is the mean level spacing of a sing
subsystem atl50. After some simple calculation, the firs
4-8
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order perturbation theory giveŝ(dl i
(p)/d«)2&52s2s1

2/N
and is independent of intersubsystem coupling strengths2.
As a result of the rescaling, the curvature distribution
quires the form

P~k!5
2

p H r /2

@k21~11r !2#
1

~11r !2

@k21~11r !2#2J , ~58!

controlled by the only parameterr 5s2
2/s1

2, i.e., the ratio of
the intersubsystem to the intrasubsystem coupling streng
Superimposing the plots of this expression over the app
priately normalized numerical data shows good agreem
for all corresponding values of the parameterr, despite the
noise in the large curvature tails. For curvatures exceed
the typical valuek@r 11 the distribution shows a power
law tail, the GUE-like behaviork24 being replaced by the
Cauchy-Lorentz onek22 with the relative growth of the ratio
r. For anyr .0 the most distant tail is always of the Cauch
Lorentz type, but intermediate GUE-like behavior is clea

FIG. 1. Normalized GUE curvature distributions for a few s
lected values of r 5s2

2/s1
2 ~intercoupling to intracoupling

strengths!; bottom plot~log-log scale! shows the tail behavior of the
same distribution.
04612
-

s.
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nt
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seen forr !1 when intrasubsystem coupling appreciably e
ceeds the intersubsystem one. The crossover curvature v
between the two regimes of decay is approximately
scribed by the expression

kcr.A2S 1

Ar
1Ar D , ~59!

which can be obtained by equating the large-curvature t
originating from the two competing terms in the express
Eq. ~58!. For curvatures in the interval 1!k!kcr.A2/r ,
the behavior is GUE-like, changing to a slower Cauch
Lorentz decay atk@kcr.A2/r . It is also easy to verify that
the maximal value of the distributionPmax5P(0) always
decreases with the increasing ratio

P~0!5
1

p F 1

r 11
1

1

~r 11!2G ~60!

FIG. 2. Normalized GOE curvature distributions for a few s
lected values ofr 5s2

2/s1
2. The solid lines are analytical prediction

superimposed over numerical data plots.
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For the case of GOE, a similar rescaling of curvatures
l50 ands5A2 leads from Eq.~55! to the expression

P~k!5
1

2pE2`

`

dx
1

~x211!3/2

r

r 21~x2k!2
. ~61!

We plot this distribution superimposed over the numeri
data for various values ofr. Again, they agree rather we
with the numerics and a crossover behavior from GOE-l
tail to Cauchy-Lorentz one can be seen clearly for smar,
e.g.,r 50.05.

In fact, one may notice from our plots that decrease
maximal value of the distribution starts to be noticeable
much smaller values ofr than the modification of tail behav
ior at not very large values ofk. This fact qualitatively cor-
roborates with the experimental observations in qua
blocks @9#, where noticeable deviations were detected in
th

rs

of

lu

04612
t

l

e

n
t

z
e

center of the distribution, whereas the tails agreed well.
though, our oversimplified model clearly cannot be cons
ered as adequate for describing the actual experimental
ation, we nevertheless mention that the choice ofr .0.2
allows matching the drop of the peak value with the expe
mentally observed deviation and produces an overall g
agreement with the experimental curve.

As we already noted in the text of the paper, and
clearly seen from the numerical log-log plots, the limitin
large-N curvature distribution due to purely off-diagonal~in-
tersubsystem! perturbations turned out to have the sam
Cauchy-Lorentz form irrespective of the underlying symm
try, for bothb52 andb51. Below we give an alternative
heuristic derivation of this fact, which sheds some light
the origin of such a behavior. The starting point for o
analysis is expression Eq.~13! for b52 or Eq. ~35! for b
51. Denoting l i

(1)5l, as in the text above, we rewrit
those formulas as
K )
k51

N F ~l2l2,k!

S l1
i x̃

N
D 2l2,k

G b/2L
Ĥ2

5K )
k51

N F 12
i x̃

N

1

S l1
i x̃

N
D 2l2,k

G b/2L
Ĥ2

5K expH b

2 (
k51

N

lnF 12
i x̃

N

1

S l1
i x̃

N
D 2l2,k

G J L
Ĥ2

'K exp2
b

2 (
k51

N
ix̃

N

1

S l1
i x̃

N
D 2l2,k

L
Ĥ2

. ~62!
is

n

its

la

te-
At the last step we made a plausible assumption that
above in expression the limit of largeN can be approximated
by expanding the logarithms in the exponential to the fi
nonvanishing term. Now we introduce anexacteigenvalue
density forĤ2 as

r~m!5
1

N (
k51

N

d~m2l2,k!, ~63!

whered(x) stands for the Dirac delta function. In terms
this density the ensemble average~62! can be rewritten as

K expH 2 i
b

2
x̃E dmr~m!

1

S l1
i x̃

N
D 2mJ L

Ĥ2

. ~64!

Now, we use the well-known fact that the exact eigenva
density for random matrices isself-averaging, which means
in the limit N→` it converges to anonrandomsmooth
e

t

e

function, the mean eigenvalue density. The latter function
just given by the Wigner semicircular lawrsc(m)

5(2/pmsc
2 )Amsc

2 2m2 for umu,msc , wheremsc5A8s2 for
GUE andmsc5A2s2 for GOE. All these facts suggest that i
the limit of largeN the ensemble average in Eq.~64! can be
suppressed in favor of replacing the exact density with
semicircular form. Moreover, sincersc(m) is a smooth func-
tion, in the limit of N→` we can use the Sohotsky formu

lim
N→`

E
2msc

msc
dmrsc~m!

1

S l1
i x̃

N
D 2m

5PE
2msc

msc
dmrsc~m!

1

~l2m!
2 i sgn@ x̃#prsc~l!,

~65!

where the first term is understood as a principal value in
4-10
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gral, and sgn stands for the sign function of the argumen
fact, with some effort the integral can be evaluated explici

2

pmsc
2

PE
2msc

msc
dm

Amsc
2 2m2

~l2m!
52

l

msc
2

. ~66!

Collecting all terms we see that

K F det~l Î N2Ĥ !

detF S l1 i
x̃

N
D Î N2ĤG G

b/2L U
N→`

5expH 2
b

2 F i x̃
2l

msc
2

1ux̃uprsc~l!G J , ~67!

which coincides with the earlier derived expressions in E
~24! and ~48!.

It is natural to expect that such a derivation can be m
mathematically rigorous. However, despite its simplicity a
conceptual clarity, such a method cannot be straight
wardly applied to evaluation of the more complicated av
ages such as those in Eqs.~27! and ~51!. Indeed, the appli-
cation of the outlined procedure to Eq.~27! amounts to
approximating the extra determinant factor in the largeN
limit as

det2~l Î N2H2!'expH 2N
2

pmsc
2

PE
2msc

msc
dmAmsc

2 2m2

3 ln~l2m!J 5e2Nl2/msc
2

, ~68!

which is indeed a correct expression up to theleadingorder
in N in the exponential. It serves to cancel the extra fac
e2Nl2/4s2

in front of the ensemble average in Eq.~27!. How-
a-

K

04612
In
:

s.

e

r-
-

r

ever, it is easy to understand that to arrive at the corr
expression Eq.~29! one needs to take into accountsublead-
ing terms—those of the order of unity in the exponenti
This goal goes beyond the simple use of self-averaging,
requires a much more detailed treatment. It is not clear at
moment how to implement such a treatment in the pres
heuristic scheme. That is why the supersymmetrizat
method, which yields fully controllable results in all cas
should be in general preferred.

In conclusion, we have derived exact expressions for
distribution of level curvatures in a model describing a m
ing of two independent spectra by a generic perturbati
Although the model is too simple to describe actual expe
mental situation in systems with partially broken symm
tries, some features of the behavior of our curvature dis
bution may play a role of useful analogy helping
understand the deviations in experimentally measured le
curvature distribution of the acoustic resonances of qu
blocks@9#. Indeed, the maximum value of the latter distrib
tion was found to be considerably lower than that predic
for pure GOE case, whereas the tail shows goodC23 decay.
This agrees qualitatively with our observation that the pe
value of the curvature distribution might be more sensitive
remnant symmetries than the power law tail behavior.

In fact, an ideal experimental realization of our mod
may be the system of two superconduction microwave
liards coupled by an antenna in a variable way@19#. Al-
though, in real experiments of this type the coupling w
changed in large discrete increments, it is in principle p
sible to change it in a much more controllable way, and
study level dynamics induced by such a coupling. We ho
that our results may stimulate experiments of this sort.
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